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Abstract We introduce a mathematically rigorous analysis of a generalized spin-
boson system for the treatment of a donor–acceptor (reactant-product) quantum sys-
tem coupled to a thermal quantum noise. The donor/acceptor probability dynamics
describes transport reactions in chemical processes in presence of a noisy environ-
ment – such as the electron transfer in a photosynthetic reaction center. Besides being
rigorous, our analysis has the advantages over previous ones that (1) we include a gen-
eral, non energy-conserving system-environment interaction, and that (2) we allow
for the donor or acceptor to consist of multiple energy levels lying closely together.
We establish explicit expressions for the rates and the efficiency (final donor–acceptor
population difference) of the reaction. In particular, we show that the rate increases
for a multi-level acceptor, but the efficiency does not.
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1 Introduction

1.1 Transfer reactions and spin-boson model

An important problem in chemistry and biology is to find electron transfer rates and
transfer efficiencies in chemical reactions. A prominent example is the electron transfer
in proteins carrying out photosynthesis [2–5]. The simplest reactions are described by
two states, a reactant (electron donor) and a product (electron acceptor). Before the
reaction, the system is localized mainly in the reactant state, and after mainly in the
product state. The passage from reactant to product is induced by two effects: a direct
tunneling (hopping) and an indirect transition. The former originates from electron
tunneling between reactant and product moieties, while the latter is due to the presence
of thermal noise created by the many protein atoms and molecules in which the electron
donor and acceptor are embedded.

Denoting the reactant and product states by |R〉 and |P〉, respectively, a “Marcus
model” Hamiltonian for the electron exchange has been used in [6,7],

HMarcus = |R〉ER〈R| + |P〉EP〈P| + |R〉V 〈P| + |P〉V 〈R|,

where ER and EP are the reactant and product energies, and V is the direct tunneling
constant. Both ER and EP represent the collective energies of many particles (atoms
and the molecules), corresponding to the reactant and product states of the protein
environment. In the Marcus theory, the energy curves are taken to be harmonic in the
collective position coordinate q,

ER = 1
2 f q2, EP = 1

2 f (q − qP)2 − ε0.

Here, f denotes the common force constant of reactant and product, qP is the equi-
librium position of the product collective position (the reactant one being centered
at the origin), and ε0 is the product-reactant energy difference. When describing the
collective degrees of freedom of the environment quantum mechanically, the reactant
and product energies become the operators with the Hamiltonians of a collection of
harmonic oscillators [7]

HR =
∑

α

(
p2
α

2mα

+ 1
2 mαω2

αq2
α

)
, HP =

∑

α

(
p2
α

2mα

+ 1
2 mαω2

α(qα − q0,α)2 − ε0,α

)
.

The number of oscillators corresponds to the number of atoms in the proteins and is
very large (of the order of 104 and more for the photosynthetic reaction center). Using
these expression in the Hamiltonian HMarcus above, we may write

HMarcus =
[

HR V
V HP

]
,
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which, under proper identification of parameters (see [7]), has the form of the spin-
boson Hamiltonian (plus a constant term which we drop)

HSB = V σx + 1
2εσz + HR + λσzϕ(h). (1.1)

Here, σx and σz are Pauli matrices, and

ϕ(h) = 1√
2

∑

α

hα

(
a†
α + aα

)

is the bosonic “field operator”, expressed in terms of the creation and annihilation
operators satisfying aβa†

α − a†
αaβ = 0 if α �= β and aαa†

α − a†
αaα = 1.

One achievement of Xu and Schulten’s [7] work is the identification of the Marcus
theory model with a spin-boson system. This identification allows to take over results
obtained previously for the spin-boson system. In particular, Xu and Schulten use
Leggett et al.’s [8] expression for the transfer rate in the spin-boson system, and show
that at high temperatures, it coincides with the transfer rate predicted by the Marcus
theory. In this setting, it is assumed that the direct coupling V is very small. The term
V σx is then viewed as a perturbation of the other terms in the spin-boson Hamiltonian
(1.1).

We recognize that the works cited above are of great importance in the field. Our
aim for the present paper is to try to improve some points.

1. Shortcoming. The derivation of the transfer rate for small V given in [8], and
then used by Xu and Schulten [7], has two weak points. (1) The dominant term
of the transfer rate is determined only heuristically (c.f. (3.31) of [8], errors in the
perturbation expansion, i.e., terms of order V 2 and higher, cannot be estimated).
(2) Additional approximations (of Born-Markov type) are made in the derivation.
Their validity has not been (cannot be) verified rigorously (see before (3.32) of
[8]).
Remedy. We use the rigorous ‘dynamical resonance method’ [10,11] to find the
dynamics of the reduced spin density matrix at all times t ≥ 0, for arbitrary
tunneling matrix elements V and arbitrary energy separations ε. By rigorous, we
mean that our results are derived by a mathematical perturbation theory in the
coupling λ between spin and bath, in which the remainder terms are controlled
and are small uniformly for all times t ≥ 0.

2. Shortcoming. In the model (1.1) used by Xu and Schulten [7], the interaction term
λσzϕ(h) commutes with the main term 1

2εσz (as V is assumed to be small). This
means that in absence of direct hopping (V = 0), there is no electron transport at
all. This is so since the populations are constant in time (diagonals of the density
matrix in the energy representation). However, in reality, one would still expect
electron transport due to the thermal noise, even if there is no direct hopping [12].
Remedy. We modify the Hamiltonian (1.1) by adding to the right side the term
λaσxϕ(h) which induces population dynamics (electron transport) even if V = 0.
Our analysis remains rigorous in presence of this term.
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3. Shortcoming. In the above model, both the electron donor and acceptor are
assumed to have single levels. However, due to the complexity of the biologi-
cal system at hand, it is reasonable to consider that either (or both) of donor and
acceptor consist of a number of levels ND, NA, centered around an average energy
ED, EA.
Remedy. We generalize the single-level system to the multi-level situation. We
show that the multi-level model reduces to a single-level model with rescaled
Hamiltonian matrix elements.

While our approach allows for the above-mentioned improvements, we can only
treat small values of the coupling between the donor–acceptor system and the thermal
reservoir. Throughout this work, we assume that

|λ| � ED − EA. (1.2)

In this inequality, we consider λ to be renormalized as to have the dimensionality of
energy [i.e., (1.2) means that C |λ| < ED − EA, where C is a small constant depending
on the various parameters of the model, and which is such that the left side has the
dimensionality of energy].

The derivation of the electron transfer rate for small V in [8] is based on the fact
that the spin-boson Hamiltonian, for V = 0, can be explicitly diagonalized (as in their
model, the bath interaction commutes with the system Hamiltonian). As a result, the
(heuristic) perturbation theory in V of Leggett et al. [8] yields an expression for the
electron transfer rate which contains all orders in the spin-reservoir coupling λ. This
approach cannot be carried out as soon as the interaction between spins and bosons
is not proportional to σz , as the resulting Hamiltonian is not explicitly diagonalizable,
even for V = 0. Instead of containing all orders in λ and second order in V only, in
our approach we obtain transfer rates (and the dynamics in general) to second order in
λ but to all orders in V , even in presence of a (de-)coherence altering interaction. We
show in Sect. 5 that the order λ2 term of Leggett et al.’s transfer rate coincides with
that obtained by our method.

1.2 Transfer rates, separation

Assume that initially, the donor is populated with probability one. In the course of
time, the acceptor gains some population probability and for large times, the whole
system converges to an asymptotic state. We call the transfer rate the speed at which
the acceptor is populated, and the transfer separation the difference of acceptor minus
donor population probability in the asymptotic state (after a long time). The results
presented here are immediate consequences of a much stronger result, Theorem 2.1
of Sect. 2, which gives the dynamics of the entire donor–acceptor density matrix, for
all times.
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1.2.1 Single-level donor and acceptor

The donor–acceptor-environment Hamiltonian is given by

H =
[

ED V
V EA

]
+ HR + λ

[
gD a
a gA

]
⊗ ϕ(h). (1.3)

Here, the first matrix is called the system Hamiltonian, it is the isolated donor–acceptor
Hamiltonian, determined by the donor and acceptor energies, ED and EA (with ED >

EA), and the tunnelling matrix element, V ∈ R. HR is the Hamiltonian of the uncoupled
reservoir, a field of harmonic oscillators

HR =
∑

α

ωαa†
αaα,

where we put h̄ = 1, and aα, a†
α are bosonic annihilation and creation operators.

We take the oscillators to be in thermal equilibrium at temperature 1/β > 0; they
form a heat bath. An infinite-volume, or continuous-mode limit is taken in which the
parameter α becomes the continuous boson momentum k ∈ R

3, see Sect. 4 for more
detail. The coupling between the donor–acceptor system and the bosonic reservoir is
described by the third part on the right side of (1.3). λ ∈ R is a coupling constant,
gD, gA ∈ R and a ∈ R are interaction parameters responsible for energy conserving
and energy exchange interactions. For a = 0 (and when V = 0) we have the purely
energy-conserving interaction (the situation considered in [7]).

Key dynamical properties depend on a few system (donor–acceptor) and reser-
voir (heat bath) quantities which we introduce now. The difference between the two
eigenvalues of the system Hamiltonian is

	 =
√

(ED − EA)2 + 4V 2 ≥ 0. (1.4)

Define the parameter α, which can be positive, negative or zero, by

α = V

ED − EA
. (1.5)

The reservoir spectral density J (ω) is given, for ω ≥ 0, by

J (ω) = √
π/2 tanh(βω/2)

[
Ĉ(ω) + Ĉ(−ω)

]
,

where Ĉ(ω) is the Fourier transform of

C(t) =
〈
eit HRϕ(h)e−it HRϕ(h)

〉

β
, (1.6)

the correlation function in the reservoir state at inverse temperature β. See Sect. 4 for
details.
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Transfer rates. The decay of the donor and acceptor populations, pD and pA, is a
complicated function of time in general (see Theorem 2.1). However, in the regimes
where either ED − EA or V is small relative to the other one, the population decay
(growth) is exponential in time, and we can identify a transfer rate.

1. For |V | � ED − EA, we have

pA(t) = 1 − eitε0

1 + e−β	
+ O

(
λ2 + V

)
, (1.7)

where ε0 is a complex (resonance) energy [see (2.1)]. The remainder is uniform
(homogeneous) in t ≥ 0. The acceptor is populated monotonically exponentially,
at the rate γrelax = Imε0, which has the form

γrelax = 2λ2

[(
a − V

gD − gA

ED − EA

)2

− 4a2V 2

]
coth(β	/2)J (	)

+O(λ2V 3 + λ4). (1.8)

This result is obtained by taking α → 0 in Theorem 2.1.
2. For ED − EA � |V |, we have

pA(t) = 1

2

(
1 − Re eitε	

)
+ O

(
λ2 + ED − EA

)
, (1.9)

where ε	 is a complex (resonance) energy [see (2.2)]. The remainder is uniform
(homogeneous) in t ≥ 0. The acceptor is populated exponentially, but modulated
by cos(tRe ε	), with rate γ ′

relax = Imε	, which has the form

γ ′
relax

= λ2

√
π

2

[
(gA + gD − 2a)2 − (ED − EA)

(
2 + gA − gD

V

)
(gA + gD − 2a)

+(ED−EA)2
[ (gA − gD + a)(gA + gD − 2a)

2V 2 +
(

1+ gA − gD

2V

)2 ]]
Ĉ(0)

+λ2

4

[(
gA − gD − a(ED − EA)

2V

)2

− (ED − EA)2(gA − gD)2

4V 2

]

× coth(β	/2)J (	) + O
(
λ2(ED − EA)3 + λ4). (1.10)

This result is obtained by taking α → ∞ in Theorem 2.1.

Remark The relaxation rates (1.8), (1.10) contain the product

coth(β	/2)J (	) = √
π/2

[
Ĉ(	) + Ĉ(−	)

]
,
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which depends on the temperature 1/β only via the bath correlation function Ĉ [see
after (1.5)]. We present the relaxation rates above involving the spectral density as this
is customary in the literature.

Transfer separation. We define the separation by

S = pA(∞) − pD(∞).

It measures how much the populations are separated after relaxation and satisfies
−1 ≤ S ≤ 1. The extreme cases S = ±1 correspond to complete localization of
the final state in level one or two. S = 0 means complete delocalization (both levels
equally probable). We obtain from Theorem 2.1

S = −1 + 2√
1 + 4α2

{
1

1 + e−β	
+ 2α2

1 + √
1 + 4α2

}
. (1.11)

The separation does not depend on the initial state of the system. For ED − EA � V
(i.e., α large) we have S ≈ 0, independently of the temperature. For V � ED − EA
(α small) we have S ≈ −1 + 2

1+e−β	 = tanh(β	/2), which becomes S ≈ 0 at high
temperatures (β → 0), and S ≈ 1 at low temperatures (β → ∞).

We conclude:
For large hopping constant (ED − EA � V ) the donor and acceptor are populated

equally in the long run(S ∼ 0). The same happens for small hopping constant(V �
ED − EA) at high temperature. However, for small hopping constant(V � ED − EA)
and low temperature, the acceptor is fully populated in the long run (and the donor
has probability zero).

1.2.2 Multi-level acceptor model

For an NA-fold degenerate acceptor, the total Hamiltonian is

H =

⎡

⎢⎢⎢⎣

ED V · · · V
V EA
...

. . .

V EA

⎤

⎥⎥⎥⎦ HR + λ

⎡

⎢⎢⎢⎣

gD a · · · a
a gA
...

. . .

a gA

⎤

⎥⎥⎥⎦ ⊗ ϕ(h). (1.12)

We introduce the donor state, ϕD, and the collective acceptor state, σA,

ϕD =

⎡

⎢⎢⎢⎣

1
0
...

0

⎤

⎥⎥⎥⎦ , σA = 1√
NA

⎡

⎢⎢⎢⎣

0
1
...

1

⎤

⎥⎥⎥⎦ . (1.13)

In the basis {ϕD, σA}, (1.12) takes the form
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H =
[

ED V
√

NA

V
√

NA EA

]
+ HR + λ

[
gD a

√
NA

a
√

NA gA

]
⊗ ϕ(h). (1.14)

This Hamiltonian is of the form (1.3), but in a different basis, and with rescaled off-
diagonal matrix elements. We can thus take over results obtained for the two-level
model (see Sect. 2 for details). As explained below, the final populations depend on
the initial density matrix in the multi-level case. In this section, we assume that initially,
the donor is fully populated and there is no donor–acceptor entanglement initially. In
other words, the initial donor–acceptor density matrix is |ϕD〉〈ϕD|.
Remark We consider here V independent of NA, so the direct donor–acceptor interac-
tion is of the size V NA. One may compensate this growth by scaling V with a negative
power of NA. We do not pursue this question in the present manuscript.

Transfer rates, multi-level acceptor model. As in the case of the two-level system,
the decay of populations is exponential in two limiting cases.

1. For
√

NA|V | � ED − EA, we have

pA(t) = 1

NA

1 − eitε0

1 + e−β	
+ O

(
λ2 + V 2

)
, (1.15)

where ε0 is a complex resonance energy, depending on NA (see Theorem 2.3). The
acceptor is thus populated exponentially quickly and monotonically, at the rate

γrelax = 2NAλ2

[(
a − V

gD − gA

ED − EA

)2

− 4NAa2V 2

]
coth(β	/2)J (	)

+O
(
λ2V 3 + λ4

)
. (1.16)

A proof of this is obtained by taking α small in Theorem 2.2.
2. For ED − EA � √

NA|V |, we have

pA(t) = 1

2NA

(
1 − Re eitε	

)
+ O

(
λ2 + ED − EA

)
, (1.17)

where ε	 is a complex resonance energy, depending on NA (see Theorem 2.3).
The acceptor is populated exponentially, modulated by cos(tRe ε	), with rate

γ ′
relax = λ2

√
π

2

[(
gA + gD − 2a

√
NA

)2

−(ED − EA)

(
2 + gA − gD

V
√

NA

)(
gA + gD − 2a

√
NA

)

+(ED − EA)2
[(gA − gD + a

√
NA

) (
gA + gD − 2a

√
NA

)

2V 2 NA

+
(

1 + gA − gD

2V
√

NA

)2 ]]
Ĉ(0)
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+λ2

4

[(
gA − gD − a(ED − EA)

2V

)2

− (ED − EA)2(gA − gD)2

4V 2 NA

]

× coth(β	/2)J (	) + O
(
λ2(ED − EA)3 + λ4

)
. (1.18)

A proof of this is obtained by taking α small in Theorem 2.2. For large NA, we
obtain

γ ′
relax ≈ 2

√
2πλ2a2 NAĈ(0) + λ2

4

(
gA − gD − a(ED − EA)

2V

)2

J (2V
√

NA).

(1.19)

(Note that 	 ≈ 2V
√

NA in this case.)

Transfer separation for the multi-level system. Since all acceptor levels are pop-
ulated equally at all times, we define the transfer separation for the multi-level acceptor
system by

S = NA pA(∞) − pD(∞). (1.20)

Then S = 2 〈|σA〉〈σA|〉∞ − 1, which is given again by (1.11), but with

α = √
NA

V

ED − EA
. (1.21)

For large NA, we have S = 0, which means that all donor levels share probability 1/2
and all acceptor levels share probability 1/2 as well.

Discussion: effects of multiple levels.

(1) Transfer rate and degeneracy. The effect of the NA-fold acceptor degereracy is
to multiply the hopping coefficient V and the decoherence coefficient a by

√
NA,

while it does not affect energy conserving parameters [see (1.14)]. Accordingly,
the relaxation rates are (roughly) acquiring a factor NA (as they are proportional to
the square of the coefficients V and a), see (1.16) and (1.19). Therefore, NA-fold
acceptor degeneracy speeds up the transfer process, the rate being proportional
to NA.

(2) Asymptotic population and degeneracy. Due to the scaling, the Hamiltonian (1.14)
becomes, for large NA,

V
√

NA

[
0 1
1 0

]
+ HR + λa

√
NA

[
0 1
1 0

]
⊗ ϕ(h).

Therefore, the off-diagonal density matrix elements of the donor–acceptor system
(in the basis {ϕD, σA}) is time-independent. Moreover, the system approaches the
Gibbs equilibrium state in the long run, and the latter is, up to O(λ2)-terms, equal
to
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e−βV
√

NA |1〉x 〈1| + e−βV
√

NA | − 1〉x 〈−1|
2e−βV

√
NA

= 1

2
1.

This is why, in presence of many acceptor levels, the final populations both in the
donor, and in all acceptors together, equal one half each. Hence pA = 1/(2NA).

(3) Separation and degeneracy. In line with equal total distribution of donor and
acceptor levels (previous point), the separation must vanish for large NA.

(4) Degenerate donor. If the donor is ND-fold degenerate and the acceptor is simple,
then all the above formulas for the transfer rates and separations are the same,
upon replacing NA by ND.

(5) Both acceptor and donor degenerate. Some of our results hold if both the donor
and the acceptor are degenerate. However, so far, we have not been able to find the
dynamics of both the donor and acceptor in this setting, see the explanations in
Sect. 2. However, a consideration as in point (2) above gives the following asymp-
totic result: if the donor and acceptor have degeneracies ND and NA, respectively,
then the transfer rates scale as

√
ND NA, and the separation becomes zero for large

ND and NA. Asymptotically, each donor level has probability 1/(2ND) and each
acceptor level has probability 1/(2NA).

(6) Quasi-degenerate levels. Our approach is also applicable if the levels are not
exactly degenerate, but, say, spread around average values ED and EA. More pre-
cisely, if, similar and in addition to (1.2), the spread E of the levels satisfies
E � ED − EA, then the formulas below for transfer rates and separation give
the correct lowest order terms in E . In principle, one can calculate corrections
of order E , but this is rather complicated.

(7) Dependence on initial condition. Consider a doubly-degenerate acceptor, system
(1.12) with 3×3 matrices. This system has two invariant states (the kernel of H
has dimension two). One is immediately seen to be

τ = 1√
2

⎡

⎣
0
1
−1

⎤

⎦ ⊗ 	R,

where 	R is the equilibrium state of the reservoir (satisfying HR	R = 0). The
other stationary state is given by the 2D-reduced Gibbs equilibrium state of the two-
dimensional system interacting with the reservoir, expressed in the basis {ϕD, σA},
(1.14). After tracing out the reservoir degrees of freedom, and to lowest order in the
system-reservoir interaction λ, this 2D-Gibbs state is 	S ∝ exp(−βHS), where
HS is the first matrix on the right side of (1.12). For instance, if V = 0, then

	S = e−βED |ϕD〉〈ϕD| + e−βEA |σA〉〈σA|
e−βED + e−βEA

. (1.22)

Note that in the original basis {ϕD, ϕ1, ϕ2}, in which the matrices in (1.12) are
presented, the final state (1.22) is not even diagonal.
A general initial condition will converge, for large times, to a superposition of
the two invariant states. If the initial condition belongs to one of the invariant
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subspaces span{ϕD, σA} or Cτ , then its final state will be the 2D-reduced Gibbs
state or τ . In the above results, we assume that the initial condition is the pure state
entirely concentrated on the donor. It belongs to the subspace spanned by {ϕD, σA}
and hence the final state is the associated Gibbs state. A similar dependence of
the asymptotic state on the initial condition holds for any acceptor dimension. We
note that a deviation of the Gibbs equilibrium as a final state of an open system
has also been observed in [14], in the setting of a spin coupled symmetrically to a
bath of other spins in thermal equilibrium (‘spin star system’).

(8) Continuous acceptor, or sink, or Wigner–Weiskopf limit in presence of a heat bath?
In so-called “sink” or Wigner-Weiskopf models, a dissipative part of the system
is modeled by considering a system of interest (the donor) coupled to N energy
levels (the acceptors), and the limit N → ∞ is taken in order to obtain irreversible
phenomena (decay). See, for example [13, p. 36] and following. In taking the
continuum limit, the typical spacing between individual levels, E , is decreased
more and more and at the end the levels are characterized by a continuous density
of states. The typical role of a sink is to depopulate the donor exponentially quickly
(at a rate proportional to the density of states). One may ask if, in taking NA → ∞
in our model, we obtain the same dynamical or asymptotic results as for a sink
model. The answer is negative for the reason we explain below. However, we point
out that the rigorous derivation of the Wigner-Weiskopf model has never been done
(to our knowledge) in the presence of an additional heat bath.
The following transition occurs when taking the E → 0 limit in presence of a
thermal bath. Let λ be the coupling strength of the donor–acceptor system with the
thermal bath. If λ � E , then the donor–acceptor energy levels “are well defined”
(as without interaction with the heat bath). In this case, the asymptotic state is
given by the Gibbs state of the donor–acceptor system (∝ exp(−βHS), modulo
corrections small inλ). The final donor population is consequently [consider V = 0
in (1.12)]

pD = e−βED

e−βED + Ne−βEA
,

which decreases as 1/N . In this regime the transfer has a good efficiency (almost
total depopulation of the donor), as is the case in the Wigner-Weiskopf model.
However, as we increase N , we decrease E and we reach the regime λ � E .
This case is a perturbation of the totally degenerate situation (E = 0) which we
treat in the present paper. The 2D-reduction (1.14) then takes place, and we obtain
a final donor population [see after (1.21)]

pD ≈ 1/2,

which means that the transfer is not very efficient (and cannot be made more so
by increasing the number N of acceptors).

To sum up: Our analysis holds for arbitrary N , but in the limit N → ∞, it does not give
depopulation of the donor. The depopulation however holds in sink-models without a
thermal bath.
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2 Main results: details

2.1 Two-level donor–acceptor model

The total Hamiltonian is given by (1.3). We point out that J (ω) is independent of the
temperature. It has the explicit representation (ω > 0)

J (ω) = ω2
∫

S2

|h(ω,�)|2d�,

where the integral is over the two-dimensional sphere, and the function h = h(k) is
written in spherical coordinates for k = (ω,�) ∈ R

3. (In the last expression for J ,
the oscillators are indexed by α → k in the continuum, or infinite volume limit for
the momentum k ∈ R

3.)
Let ρt be the reduced donor–acceptor density matrix, when the degrees of freedom

of the environment are traced over. We assume that initially, the entire system is in a
state of the form

ρin = ρ0 ⊗ ρR,

where ρ0 is an arbitrary two-state initial density matrix, and ρR is the initial state of
the reservoir, taken to be at equilibrium at inverse temperature β. Then we have the
dynamical equation

ρt = TrR

[
e−it H ρineit H

]

for the reduced density matrix. Here, the trace is taken over the reservoir space.
The two eigenvalues of the donor–acceptor Hamiltonian are

1

2

[
ED + EA ±

√
(ED − EA)2 + 4V 2

]
,

resulting in the eigenvalue difference (1.4). We define the ‘resonance energies’ by

ε0 = 2iλ2 [a + (gA − gD)α]2

1 + 4α2 coth(β	/2)J (	) (2.1)

ε	 = ε0/2 − 	 − λ2 X + iλ2
√

π/2 Y 2Ĉ(0) (2.2)

where

Y = (gA − gD)
4α2

√
1 + 4α2

(√
1 + 4α2 − 1

) + 2gD − a
4α√

1 + 4α2
+ EA − ED.

(2.3)
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and

X = (ED − EA)

(
4gD − a

8α√
1 + 4α2

− Y

)
Im

∞∫

0

〈ϕ(t)ϕ〉β dt

+2
√

2/π
[a + (gA − gD)α]2

1 + 4α2 Re

∞∫

0

sin(	t) 〈ϕ(t)ϕ〉β dt. (2.4)

Here, 〈 〉β denotes the average in the thermal equilibrium of the environment. We
denote by [ρt ]i j the matrix elements of the reduced density matrix of the two-level
system in the basis {[1 0]t , [0 1]t }. The following is our main result. It describes the
population dynamics of the two-level system, identifying a main part and a remainder,
which is of order O(λ2), homogeneously in (independent of) time.

Theorem 2.1 The dynamics of the product (acceptor) probability [ρt ]22, for t ≥ 0, is
given by

[ρt ]22 = [ρ0]22
1

1 + 4α2

{
eitε0 + 4α2Re eitε	

}

−Re ([ρ0]12)
2α

1 + 4α2

{
eitε0 − Re eitε	

}

+Im ([ρ0]12)
2α

1 + 4α2 Im eitε	

−[1 + e−β	]−1

√
1 + 4α2

(
eitε0 − 1

)
+ eitε0 + √

1 + 4α2

1 + √
1 + 4α2

2α2

1 + 4α2

− 2α2

1 + 4α2 Re eitε	 + O(λ2). (2.5)

The remainder term O(λ2) is independent of t ≥ 0 (and of ED, EA, V, a varying in
bounded sets).

Remarks. In the “usual” setup [9–11] for the derivation of the reduced density matrix
(2.5), we start with a diagonal system Hamiltonian. Then the diagonal density matrix
elements evolve jointly, and only the ‘resonances bifurcating out of the zero eigenvalue’
(ε0 here) are present in their evolution. However, in the present setup, HS is not
diagonal, and as a result, the evolution of the diagonal involves the initial condition
of the off-diagonal density matrix elements, and the evolution also depends on the
resonances bifurcating out of the non-zero eigenvalues (ε	 here).

2.1.1 Multi-level donor–acceptor model

We consider an ND-fold donor and an NA-fold acceptor with energies ED and EA,
respectively. The energy levels may be distributed around these two fixed energies,
provided their spread is small. The total Hamiltonian is
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H =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

ED V . . . V
. . .

...
...

ED V . . . V
V . . . V EA
...

...
. . .

V . . . V EA

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ HR

+λ

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

gD a . . . a
. . .

...
...

gD a . . . a
a . . . a gA
...

...
. . .

a . . . a gA

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

⊗ ϕ(h). (2.6)

The donor–acceptor space is partitioned into ND levels ED and NA levels EA. By
introducing the vectors

σD = 1√
ND

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
...

1
0
...

0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

, σA = 1√
NA

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...

0
1
...

1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2.7)

the Hamiltonian (2.6) can be written as

H = E + V
√

ND NA
{|σD〉〈σA| + |σA〉〈σD|} + HR

+λ
{
G + a

√
ND NA

(|σD〉〈σA| + |σA〉〈σD|)
}

⊗ ϕ(h), (2.8)

where

E = diag(ED, . . . , ED, EA, . . . , EA), (2.9)

G = diag(gD, . . . , gD, gA, . . . , gA). (2.10)

Reduction to two-level system. From (2.8)–(2.10) we see that H leaves the
subspace

H = span{σD, σA} ⊗ HR

invariant. This means that if χ ∈ H then Hχ ∈ H. It is the same as saying that H can
be written as a block-diagonal matrix in the decomposition

H = H ⊕ H⊥
.
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Of course, each block is still infinite-dimensional due to the reservoir degrees of
freedom, but the block in H involves only two donor–acceptor vectors, namely σD and
σA. This is why the the multi-level donor–acceptor model has a two-level formulation.
In the basis {σD, σA}, H in (2.6) takes the form

H =
[

ED V
√

ND NA

V
√

ND NA EA

]
+ HR + λ

[
gD a

√
ND NA

a
√

ND NA gA

]
⊗ ϕ(h). (2.11)

This Hamiltonian is of the form (1.3) with rescaled off-diagonal coefficients V →
V

√
ND NA and a → a

√
ND NA.

Symmetry. Due to the symmetry of the Hamiltonian H , (2.8), the donor–acceptor
density matrix has a special structure. For 1 ≤ i, j ≤ ND + NA, let Ui j be the unitary
operator wich exchanges labels i and j . In other words, Ui jϕi = ϕ j , Ui jϕ j = ϕi and

Ui, jϕk = ϕk if k �= i, j , where {ϕk}ND+NA
k=1 is the energy basis [in which (2.6) and

(2.7) are expressed].
We consider initial density matrices ρ0 which are symmetric with respect to per-

mutation within the donor and within the acceptor subspaces,

Ui j ρ0 Ui j = ρ0 (2.12)

if 1 ≤ i, j ≤ ND and if ND + 1 ≤ i, j ≤ ND + NA. An example of a symmetric initial
state is

ρ0 = 1

ND
diag(1, . . . , 1, 0, . . . , 0), (2.13)

in which each donor degree of freedom is populated equally likely.

Theorem 2.2 (Symmetry) Suppose that the initial state is symmetric as in (2.12). The
reduced density matrix of the donor–acceptor system has the form

ρt =
[

XD(t) ∗
∗ XA(t)

]
,

where the ∗ represent some matrices, and where XD and XA are square matrices of
size ND and NA, of the form

XD(t) =

⎡

⎢⎢⎢⎢⎣

pD xD · · · xD

xD pD
. . .

...
...

. . .
. . . xD

xD · · · xD pD

⎤

⎥⎥⎥⎥⎦
, XA(t) =

⎡

⎢⎢⎢⎢⎣

pA xA · · · xA

xA pA
. . .

...
...

. . .
. . . xA

xA · · · xA pA

⎤

⎥⎥⎥⎥⎦
.

The off-diagonal matrix elements of XD are all equal and real, and so are those
of XA. All diagonals of XD are equal, and so are those of XA, and they satisfy
pA NA + pD ND = 1.
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Proof of Theorem 2.2 For 1 ≤ i, j, k ≤ ND we have

[ρt ]i j = Tr
(

UkjUkjρ0 eit H |ϕ j 〉〈ϕi |e−it H
)

= Tr
(
ρ0 eit H Ukj |ϕ j 〉〈ϕi |Ukj e

−it H
)

. (2.14)

If i = j then Ukj |ϕ j 〉〈ϕi |Ukj = |ϕk〉〈ϕk | and (2.14) means that [ρt ]i i = [ρt ]kk . If i �= j
then: Ukjϕi = ϕ j if k = i (so (2.14) gives [ρt ]i j = [ρt ] j i ) and Ukjϕi = ϕi if k �= i [in
which case (2.14) gives [ρt ]i j = [ρt ]ik]. This shows that A is of the form as given in
the theorem. Repeating the same argument for indices ND + 1 ≤ i, j, k ≤ ND + NA
yields the form of B. The relation between p and q is obtained from Tr ρt = 1. ��

Consider the average 〈|σA〉〈σA|〉t , where we recall that σA is given in (2.7). On the
one hand, we have

〈|σA〉〈σA|〉t = Tr
(
ρ0eit H |σA〉〈σA|e−it H

)

= 1

NA

NA+ND∑

i, j=ND+1

Tr
(
ρ0eit H |ϕ j 〉〈ϕi |e−it H

)

= 1

NA

NA+ND∑

i, j=ND+1

[ρt ]i j

= pA NA + xA(N 2
A − NA)

NA
= pA + xA(NA − 1), (2.15)

where pA and xA are the matrix elements of the acceptor block given in Theorem 2.2.
On the other hand, by comparing (2.11) with (1.3), 〈|σA〉〈σA|〉t equals [ρt ]22 in the
formalism of the two-level model. Theorem 2.1 thus yields the following result.

Theorem 2.3 Suppose that initially, the donor degrees of freedom are populated only,
with equal probability 1/ND, as in (2.13). Then we have

〈|σA〉〈σA|〉t = [1 + e−β	]−1

√
1 + 4α2

(
1 − eitε0

)
+ eitε0 + √

1 + 4α2

1 + √
1 + 4α2

2α2

1 + 4α2

− 2α2

1 + 4α2 Re eitε	 + O(λ2). (2.16)

Here, α,	, ε0, ε	 are given as in (1.4)–(2.4), but with a and V replaced by a
√

ND NA
and V

√
ND NA, respectively.

By proceeding in the same way, one finds

〈|σD〉〈σD|〉t = pD + xD(ND − 1), (2.17)

where pD, xD define the donor block XD defined in Theorem 2.2, and 〈|σD〉〈σD|〉t is
equal to [ρt ]11 = 1 − [ρt ]22 in the two-site model (Theorem 2.1). This means that
〈|σD〉〈σD|〉t + 〈|σA〉〈σA|〉t = 1, hence (2.15) and (2.17) give
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pA + xA(NA − 1) + pD + xD(ND − 1) = 1. (2.18)

Together with the equation pD ND + pA NA = 1 (see Theorem 2.2), (2.15), (2.17) and
(2.18) are four equations for four unknowns pA, pD, xA, xD. However, only three of
those equations are independent [as (2.18) is the sum of (2.15) and (2.17)], so the
solution is indetermined. In case NA = 1 or ND = 1, one variable is eliminated (for
instance, if ND = 1 then xD is not present), and the system of equations can be solved.
We consider this next.

Single-level donor to multi-level acceptor. We look at ND = 1 and NA ≥ 1
arbitrary. Then

pD = 1 − 〈|σA〉〈σA|〉t , pA = 1

NA
〈|σA〉〈σA|〉t , xA = 1

NA
〈|σA〉〈σA|〉t .

The first equation comes from (2.17) and 〈|σD〉〈σD|〉t + 〈|σA〉〈σA|〉t = 1. The second
equation then follows from pD ND + pA NA = 1. Finally, the third equation comes
from (2.18).

Multi-level donor to single-level acceptor. Here ND ≥ 1 and NA = 1. Then

pD = 1 − 〈|σA〉〈σA|〉t

ND
, pA = 〈|σA〉〈σA|〉t , xD = 1 − 〈|σA〉〈σA|〉t

ND
.

The statements about the transfer rates and separation in Sect. 1.2.2 follow directly
from the above formulas.

3 Proof of Theorem 2.1

The dynamical resonance method [10,11] gives the reduced dynamics of the spin
system (donor–acceptor system). Its starting point is a diagonal system Hamiltonian.
Then a rigorous perturbation theory is applied, tracing out the reservoir degrees of free-
dom and describing how the system energies become complex (‘resonance energies’)
and lead to decay. Those complex energies are the eigenvalues of a (non-hermitian)
effective energy operator, called a “level shift operator”. The task is thus to diagonalize
the 2 × 2 system Hamiltonian, and then to calculate and diagonalize the level shift
operators. We do not carry out all details as this would take up too much space.

The system Hamiltonian

HS =
[

ED V
V EA

]

is diagonalized by the unitary

U =
⎡

⎢⎣

V√
V 2+ζ 2

1

ζ1√
V 2+ζ 2

1
V√

V 2+ζ 2
2

ζ2√
V 2+ζ 2

2

⎤

⎥⎦ , (3.1)
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where

ζ1,2 = 1

2

{
ED + EA ∓

√
(ED − EA)2 + 4V 2

}
.

In the new basis, the Hamiltonian (1.3) has the form

H̃ = U HU−1 = H̃S + HR + λW̃ ⊗ ϕ(h),

where

H̃S := U HSU−1 = diag(ζ1, ζ2)

and W̃ = U WU−1. As the system Hamiltonian is now diagonal, we can apply the
dynamical resonance theory [10,11] to find the dynamics of the reduced system density
matrix. We outline the most important steps.

In the Gelfand–Naimark–Segal Hilbert space representation of the system, the den-
sity matrices on the spin-boson Hilbert space, C

2 ⊗ F(L2(R3, dx3)), are identified
with vectors of a new Hilbert space HGNS = C

2 ⊗ C
2 ⊗ F(L2(R × S2, du × d�)).

This “doubling” of the space is described in detail in [10,11]. Here, F(X) is the
Fock space over the one-particle space X [1]. For X = L2(R × S2, du × d�) it
carries the creation operators and annihilation operators a(u, �), a†(u, �) satisfy-
ing [a(u, �), a†(u′, �′)] = δ(u − u′)δ(� − �′) (Kronecker deltas). The Liouville
operator is defined by

K̃ = L̃S + LR + λ Ĩ ,

where L̃S = H̃S ⊗ 1S − 1S ⊗ H̃S, LR = d�(u) is the second quantization of the
operator of multiplication by the argument u ∈ R in L2(R × S2). The operator
Ĩ represents the interaction between the spin and the bosons. The explicit form is
Ĩ = W̃ ⊗1S ⊗ϕβ(h)− J1/2(W̃ ⊗1S ⊗ϕβ(h))J1/2, where J, are the modular
conjugation and the modular operator associated to the vector 	S ⊗ 	R ∈ HGNS.
Here, 	S is the trace state of the spin and 	R is the vacuum vector, representing the
equilibrium state at temperature 1/β > 0 of the infinitely extended bose gas. The
modular data is a concept of Tomita-Takesaki theory of von-Neumann algebras. We
do not define these objects here, but refer to [1,10,11] for details. The spectrum of
L̃S consists of energy differences of H̃S. The spectrum of LR has a simple eigenvalue
zero with eigenvector 	R and is otherwise continuous, covering the whole real axis.
The four eigenvalues of K̃0 = L̃S + LR are ±(ζ1 − ζ2) (each simple) and zero
(twice degenerate). These eigenvalues are embedded in the continuous spectrum. The
achievement of the dynamical resonance theory is to describe the instability of the
eigenvalues under the perturbation λ Ĩ . More precisely, these eigenvalues become the
complex eigenvalues of a spectrally deformed version of the operator K̃ . To each
of the eigenvalue e of K̃0 is associated a “level shift operator” �e. The eigenvalues
of �e are (up to fourth-order corrections in λ) the complex eigenvalues. For e =
±(ζ1−ζ2), �e is simply a number, namely the operator acting on the one-dimensional
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space Cϕ1 ⊗ϕ2 ⊗	R and Cϕ2 ⊗ϕ1 ⊗	R, where ϕ1,2 is the canonical basis in which
H̃S is diagonal. The operator �0 is two-dimensional (as zero is doubly degenerate).
We now give the explicit form of these level shift operators. (Their definition and
calculation is rather straightforward, albeit somewhat lengthy — we refer to [10,11]
for a general formulas for the level shift operators). We have

�0 = iλ2
√

2π
∣∣〈ϕ1, W̃ϕ2

〉∣∣2
[

Ĉ(	) −Ĉ(	)

−Ĉ(−	) Ĉ(−	)

]
, (3.2)

where 	 is given in (1.4) and where Ĉ is the Fourier transform of the correlation
function (1.6) (see also Sect. 4). This operator is written in the basis {ϕ1 ⊗ ϕ1, ϕ2 ⊗
ϕ2}. The eigenvalues of (3.2) are 0 and ε0 [see (2.1)]. The eigenprojection onto the
eigenvalue zero is

Q(0)
0 = 1

Ĉ(	) + Ĉ(−	)

∣∣∣∣

[
1
1

]〉 〈[
Ĉ(−	)

Ĉ(	)

]∣∣∣∣ ,

while that on the eigenvalue ε0 is

Q(1)
0 = −1

Ĉ(	) + Ĉ(−	)

∣∣∣∣

[
1
−1

]〉 〈[−Ĉ(	)

Ĉ(−	)

]∣∣∣∣ .

We point out the formula Ĉ(	) + Ĉ(−	) = 	2 coth(β	/2), see Sect. 4. Similarly,
one finds for the level shift operator associated to ζ2 − ζ1 = 	

�	 = ε	 |ϕ2 ⊗ ϕ1〉〈ϕ2 ⊗ ϕ1|, (3.3)

where ε	 is given in (2.2). Similarly, �−	 = −ε	 |ϕ1 ⊗ ϕ2〉〈ϕ1 ⊗ ϕ2|.
This information is sufficient to give the dynamics of the reduced system density

matrix ρ̃t in the basis in which H̃S is diagonal (see e.g. Theorem 2.1 in [10] or Theorem
2.1 in [9]). For example,

[ρ̃t ]11 := 〈ϕ1, ρ̃Sϕ1〉 = At (11; 11)[ρ̃0]11 + At (11; 22)[ρ̃0]22 + O(λ2), (3.4)

where

At (11; kk) =
〈
ϕk ⊗ ϕk, Q(0)

0 ϕ1 ⊗ ϕ1

〉
+ eitε(1)

0

〈
ϕk ⊗ ϕk, Q(1)

0 ϕ1 ⊗ ϕ1

〉
.

The remainder term in (3.4) is uniform in t ≥ 0. To obtain the dynamics of the reduced
system state in the original basis (in which HS is not diagonal), we undo the base-
change implemented by U , according to ρt = U−1ρ̃tU , c.f. (3.1). This yields (after
some algebra) the relation (2.5) for [ρt ]22 = 1 − [ρt ]11. �
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4 Relation between bath correlation and spectral density functions

In this section, we derive the relation between the spectral density and the bath corre-
lation functions, see (4.13). As the spectral density function is defined in the physics
literature for environments of harmonic oscillators labelled by a discrete parameter
(momentum), we first identify all quantities of our (continuous momentum, i.e., infinite
volume) model with the equivalent discrete counterparts.

In the seminal paper [8] on the spin-Boson system, the following model is consid-
ered. A spin is coupled to a bath of oscillators. The Hamiltonian of a single Hamil-
tonian, labelled by α, is HR, as introduced before (1.1). The interaction of the bath
oscillators with the spin is given by

1

2
q0σz

∑

α

cαxα, (4.1)

where σz is the Pauli operator,

xα = 1√
2mαωα

(aα + a†
α),

see Eq. (1.4) and p. 7 of [8]. Here, q0 is a coupling constant, cα are real numbers
and aα, a†

α are annihilation and creation operators, satisfying aαa†
β − a†

βaα = δαβ

(Kronecker symbol). Leggett et al. define the spectral density in [8], Eq. (1.5), by

J (ω) = π

2

∑

α

c2
α

mαωα

δ(ω − ωα). (4.2)

Our interaction in (1.3) has the form

λ

[
gD a
a gA

]
⊗ ϕ(h). (4.3)

This interaction is identified with the quantities in Leggett et al.’s work by making
a discretization of momentum space of the free field in a box of (very large) side
length L:

∫

R3

d3k ∼
(

2π

L

)3 ∑

k∈ 2π
L Z3

a†(k) ∼
(

2π

L

)−3/2

a†
k

Then, taking the function h(k) in (4.3) to be real valued, we have
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ϕ(h) = 1√
2

∫

R3

h(k)
{

a†(k) + a(k)
}

d3k ∼ 1√
2

(
2π

L

)3/2 ∑

k∈ 2π
L Z3

hk

(
a†

k + ak

)
.

Thus our interaction (4.3) is of Leggett et al.’s form (4.1), under the following identi-
fications:

a = 0 (4.4)

gD = −gA = 1/2 (4.5)

λ = q0 (4.6)
(

2π

L

)3/2 ∑

k∈ 2π
L Z3

=
∑

α

(4.7)

hk√
2

= cα√
2mαωα

. (4.8)

We evaluate the Fourier transform of the correlation function,

Ĉ(ω) = 1√
2π

∞∫

−∞
e−iωt 〈ϕ(t)ϕ〉dt. (4.9)

We have

〈ϕ(t)ϕ〉 = 1

2

∑

α,α′
hαhα′

〈(
eiωα t a†

α + e−itωα aα

) (
a†
α′ + aα′

)〉

= 1

2

∑

α

h2
α

(
eiωα t nα + e−iωα t (nα + 1)

)
, (4.10)

where nα = 〈
a†
αaα

〉
is the average occupation of mode α. Taking the Fourier transform

of (4.10), and using that

∞∫

−∞
ei(ω−ω′)t dt = 2πδ(ω − ω′), (4.11)

we obtain, for ω ∈ R,

Ĉ(ω) + Ĉ(−ω) = √
π/2

∑

α

h2
α(1 + 2nα)δ(ω − ωα). (4.12)

For a thermal reservoir, we have nα = (eβωα − 1)−1, so

Ĉ(ω) + Ĉ(−ω) = √
2/π coth(βω/2)J (ω), (4.13)

where J (ω) is the spectral density (4.2).
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5 Recovering Leggett et al.’s results for small tunneling

In the setting of the Marcus theory of electron transport [6,7] the system-envoronment
interaction is diagonal, a = 0 in (1.3), and the tunneling element V in (1.3) is consid-
ered to be very small. Transfer rates are then obtained perturbatively in orders of V .
In this section, we show that the rate obtained in our paper is the same expression as
that obtained in Leggett et al.’s [8] work.

For a = 0 and |V | � ED − EA and to lowest order in λ and V , our relaxation rate
(1.8) is

γrelax = 2λ2V 2
(

gD − gA

ED − EA

)2

coth
(
β(ED − EA)/2

)
J (ED − EA). (5.1)

Since 	 = ED − EA + O(V ), we have replaced 	 in (1.8) by the energy difference
ED − EA in (5.1). To compare our rate with Leggett’s, we first harmonize notation.
Our parameters are identified with those of the spin-boson model in [8] according to
(4.4)–(4.8) and

V = −/2 (5.2)

ED − EA = ε, (5.3)

where  and ε are the energy gap and the tunnelling constant of Leggett et al. [8].
Therefore, in Leggett’s notation, our transfer rate (5.1) is given by

γrelax = q2
0

2

2

ε2 coth(βε/2)J (ε). (5.4)

Leggett et al. use the heuristic “golden rule” approach (Section III.D of [8]), which
is a formal perturbation theory in the tunneling constant  (plus some further approxi-
mations), to derive the following expression for the electron transfer rate (see equation
(3.38) of [8])

τ−1 = 2

∞∫

0

dt cos(εt) cos
[
(q2

0/π)Q1(t)
]

exp −
[
(q2

0/π)Q2(t)
]
, (5.5)

where

Q1(t) =
∞∫

0

J (ω)

ω2 sin ωt dω, (5.6)

Q2(t) =
∞∫

0

J (ω)(1 − cos ωt)

ω2 coth(βω/2)dω. (5.7)
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Note that (5.5) contains all orders in q0, but our result only yields the second order
(i.e., the q2

0 = λ2 term). While we use a mathematically rigorous perturbation theory,
Leggett et al.proceed as follows. First, they apply a suitable unitary transformation to
the spin-boson Hamiltonian, transforming it into [8, equation (3.30)]

Ĥ ′ = −1

2

(
σ+e−i	 + H.c.

)
+ 1

2
εσz +

∑

α

1

2

(
mαω2

αx2
α + p2

α/mα

)
. (5.8)

Here, σ+ = 1
2 (σx + iσy) and 	 = ∑

α(q0cα/mαω2
α)pα . For  = 0 this operator

is explicitly diagonalized. Then they use perturbation theory in (5.8) for small ,
and obtain (5.5) to second order in . Note that in applying perturbation theory to
(5.8), the perturbation is − 1

2(σ+e−i	 + H.c.), which depends on q0, indirectly via
	. Even though this perturbation is bounded by const.||, independently of q0, the
approximations made to arrive at (5.5) are complicated, and it is not clear if (5.5) is the
correct expression for relatively large q0. (The correction term could be, for instance,
of order 4q2

0 , which would then dominate the main part, (5.5), for 2q2
0 > 1.) For

small values of q0, the perturbation series can be controlled, and formula (5.5) should
be rigorously correct.

Expanding (5.5) for small q0, we have

τ−1 = 2

∞∫

0

dt
eiεt + e−iεt

2

[
1 − q2

0

π
Q2(t)

]
+ O

(
2q4

0

)
. (5.9)

Using Eq. (5.7) we can integrate explicitly over the variable t [c.f. (4.11)],

τ−1 = 2q2
0

2

∞∫

0

J (ω)

ω2 coth(βω/2)δ(ω − ε)dω + O
(
2q4

0

)

= 2q2
0

2ε2 J (ε) coth(βε/2) + O
(
2q4

0

)
. (5.10)

Comparing (5.10) and (5.4) shows that:
The expression for the transfer rate obtained by the resonance method, to second

order in the tunneling matrix element (V ) and second order in the interaction between
the spin and the reservoir (λ), is the same as that quantity obtained by the heuristic
“golden rule” method used in Leggett et al. [8]. Note that the equality of the two
expressions holds for arbitrary spectral density functionsJ .

Remarks. (1) [8] gives an expression for the transfer rate which contains all orders in
the coupling q0 to the reservoir, see (5.5). However, its derivation is not controlled:
it is not known if the ‘remainders’ in the perturbation arguments are smaller than
the ‘main terms’. Our method is mathematically rigorous, giving bounds on all
remainder terms in the perturbation theory arguments, in the parameter regime
where the coupling to the reservoir is small enough. This means that our main term
is guaranteed to be larger than the perturbation corrections. Higher order terms
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in the spin-reservoir coupling can be calculated rigorously with the resonance
method, but their derivation is lengthy, and we did not check if they coincide with
Leggett et al.’s expressions.

(2) It has been shown in [7] that the spin-boson system (the same as in [8]) gives
the same reaction rate for large temperatures (in the physiological regime). Since
we have just shown that our results coincide with those of Leggett et al. [8], we
have that the resonance theory produces the same transfer rate as the Marcus
theory, in the mathematically controllable parameter regime (small tunnelling
matrix element) and at physiological temperatures.
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